From Income to Consumption: Partial Insurance and the Transmission of Inequality

Richard Blundell

University College London and Institute for Fiscal Studies

July 2006

Table, Figures and References are at the end of the lecture slides.

With thanks to coauthors: Orazio Attanasio, Erich Battistin, Andrew Leicester, Arthur Lewbel, Hamish Low, Luigi Pistaferri and Ian Preston; and to David Johnson, Alissa Goodman, Jim Heckman, Greg Kaplan, Nicola Pavoni, Jean-Marc Robin, and Gianluca Violante for helpful discussions.

Inequality in Income and Consumption: Overview

- ▶ Inequality has many linked dimensions: wages, incomes and consumption
- ▶ Mediated by multiple insurance mechanisms
- ▶ Use the time series evolution of the distribution of income and consumption to identify:
 - short-run uncertainty and permanent inequality
 - the sources of insurance to income shocks
- ▶ The manner and scope for insurance is dependent upon the durability of shocks
- ► The objective is to understand the transmission between earnings, income and consumption inequality
- ▶ Figure: 1a f overall inequality; UK, US, China, Japan, Australia.

This lecture is an attempt to reconcile three important literatures:

- ▶ the examination of inequality over time via consumption and income
- e.g. studies from the BLS, Johnson and Smeeding (2005) and at IFS, Goodman and Oldfield (2004); early work in the US by Cutler and Katz (1992) and Dynarski and Gruber (1997), and in the UK by Blundell and Preston (1991) **Table I**
- econometric work on the panel data decomposition of income processes
- e.g. MaCurdy(1982), Gottshalk and Moffitt (1995), Meghir and Pistaferri (2004)
- ▶ the work on intertemporal consumption and insurance, especially on 'excess' insurance and excess sensitivity
- e.g. Hall and Mishkin (1982), Campbell and Deaton (1989), Cochrane (1991), Attanasio and Davis (1996), Blundell, Pistaferri and Preston (2005), Krueger and Perri (2006)

Insurance to Transitory and Permanent Shocks

- multiple mechanisms
 - adjustments in assets
 - informal contracts and gifts
 - individual and household labour supplies
 - social insurance, transfers and taxation
 - durable replacement
- measuring the welfare cost of risk
 - CARA preferences and risk aversion
 - within cohort comparisons

▶ Insurance to Transitory and Permanent Shocks

- exploit household panel data on income and consumption
- identify separate impact of permanent and transitory innovations to income
- separate by cohort, by stage of the life-cycle and by education group
- consider the impact of low wealth holdings
- examine the importance of labour supply within the household
- examine the importance of durables:
- ▶ BLS (2005) note that, including durables consumption inequality rises by more than 70% of income inequality rather than around 60% over the 78 to 92 period

Some resilient features of the distribution of consumption

- ▶ Log normal distribution of equivalised consumption and income by cohort and time:
 - Figure 2a-d, US; Figure 3a-c, UK.
- -> relationship between Gini and variance of log under log normality. Under lognormality the Lorenz ordering is a complete ordering coinciding with the ordering by the variance of logs (and therefore also by the Gini).
- ▶ Gibrat's law over the life-cycle for consumption rather than income?
- Extend the Deaton-Paxson *JPE* result on the variances of log consumption over the life-cycle
- ► Figure 4a-d
- ▶ will return to panel data features of log consumption, but first log income->

Some resilient features of the dynamic process for income and earnings

For each household *i*, consider a permanent-transitory income decomposition:

$$\log Y_{i,a,t} = Z'_{i,a,t} \varphi + P_{i,a,t} + v_{i,a,t} \tag{1}$$

where a and t index age and time respectively, Y is real income, and Z is a set of characteristics, observable and known by consumers, a emphasizes the key importance of cohort effects in the evolution of income over the life-cycle.

• Equation (1) decomposes innovations to log income into a permanent component $P_{i,t}$ which follows a martingale process:

$$P_{it} = P_{i,t-1} + \zeta_{it} \tag{2}$$

and a transitory or mean-reverting component, $v_{i,t}$ which follows an $\mathsf{MA}(q)$ process

$$v_{it} = \sum_{j=0}^{q} \theta_j \varepsilon_{i,t-j} \text{ with } \theta_0 \equiv 1.$$
 (3)

It follows that

$$\Delta y_{it} = \zeta_{it} + \Delta v_{it}$$
, where $y_{it} = \log Y_{it} - Z'_{it}\varphi$. (4)

- this latent factor structure aligns well with the autocovariance structure of the PSID, the BHPS and the ECFP
 - allows for general fixed effects and initial conditions.
- regular deconvolution arguments lead to identification of variances and complete distributions, e.g. Bonhomme and Robin (2006)
- we will allow the variances of the permanent and transitory factors to vary nonparametrically with cohort, education and time.
- **Tables II a, b and c** present the autocovariance structure of the PSID, the BHPS and the ECFP, relate to MaCurdy (1982), Meghir and Pistaferri (2004); note important alternative income models by Baker (2003), Guvenen (2005), Haider (2001).

The Evolution of the Consumption Distribution: The Self-Insurance model

At time t each individual i of age a maximises the conditional expectation of a time separable, differentiable utility function:

$$\max_{C} E_{t} \sum_{j=0}^{T-a} u\left(C_{i,a+j,t+j}, Z_{i,a+j,t+j}\right)$$

where $Z_{i,a+i,t+j}$ incorporates taste shifters and discount rate heterogeneity.

 Individuals can self-insure using a simple credit market, consumption and income are linked through the intertemporal budget constraint

$$A_{i,a+j+1,t+j+1} = (1 + r_{t+j}) A_{i,a+j,t+j} + Y_{i,a+j,t+j} - C_{i,a+j,t+j}$$
$$A_{i,T,t+T-a} = 0$$

with $A_{i,a,t}$ given.

• The retirement age is set at R, and the end of the life-cycle at age T.

The Self-Insurance model specification

With CRRA preferences

$$u(C_{i,a+j,t+j}, Z_{i,a+j,t+j}) \equiv \frac{1}{(1+\delta)^j} \frac{c_{i,a+j,t+j}^{\beta} - 1}{\beta} e^{Z'_{i,a+j,t+j}\vartheta}$$

the Euler equation becomes

$$C_{i,a-1,t-1}^{\beta-1} = E_{a-1,t-1} \frac{1 + r_{t-1}}{1 + \delta} e^{\Delta Z'_{i,a,t} \vartheta} C_{i,a,t}^{\beta-1}$$

and approximately

$$\Delta \log C_{i,a,t} \simeq \Delta Z'_{i,a,t} \vartheta + \eta_{i,a,t} + \Omega_{i,a,t}$$

- $\eta_{i,a,t}$ is a consumption shock with $E_{a-1,t-1}\eta_{i,a,t}=0$
- ullet $\Omega_{i,a,t}$ captures any slope in the consumption path due to the interest rate, impatience or precautionary savings.

• Up to order $\mathcal{O}(\|\nu_t\|^2)$, where $\nu_t = (\zeta_t, \varepsilon_t)'$, this can be expressed as:

$$\Delta \ln C_{it} \cong \Gamma_{bt} + \Delta Z'_{it} \varphi^c + \xi_{it} + \pi_{bt} \zeta_{it} + \alpha_{bt} \pi_{bt} \varepsilon_{it}$$

where α_{bt} is an annuitisation factor for a finite horizon and π_{bt} measures the degree to which 'permanent' shocks are insurable with precautionary savings in a finite horizon model.

- This will provide the key panel data moments that link the evolution of distribution of consumption to the evolution of income
- CLT implies that log consumption is approximately normal and the variance generally does increase with age as in the figures.
- ullet For second order moments the approximation errors is $\mathcal{O}(\|\nu_t\|^3)$ and below I give some results on this approximation using a simulated economy

First, consider information, welfare measurement and additional insurance.

Information and the income process

It may be that the consumer cannot separately identify transitory ε_{it} from permanent ζ_{it} income shocks. For a consumer who simply observed the income innovation ϵ_{it} in $y_{it} = y_{i,t-1} + \epsilon_{it} - \theta_t \epsilon_{i,t-1}$ we have consumption innovation:

$$\eta_{it} = \rho_t (1 - \theta_{t+1}) \epsilon_{it} + \frac{r}{1 + r} \theta_{t+1} \epsilon_{it}$$
(5)

where $\rho_t = 1 - (1+r)^{-(R-t+1)}$. The evolution of θ_t is directly related to the evolution of the variances of the transitory and permanent innovations to income.

• The permanent effects component in this decomposition can be thought of as capturing news about both current and *past* permanent effects since

$$E(\sum_{j=0} \zeta_{i,t-j} | \epsilon_{it}, \epsilon_{i,t-1}, \dots) - E(\sum_{j=0} \zeta_{i,t-j} | \epsilon_{i,t-1}, \dots) = (1 - \theta_{t+1}) \varepsilon_{it}.$$

• This represents the best prediction of the permanent/ transitory split

When Does Consumption Inequality Measure Welfare Inequality?

Suppose individual i, reaching adulthood in year b_i has lifetime income Y_i . The real interest rate in year s is r_s and is assumed to be the same for all individuals.

- The individual seeks to maximise an increasing and quasiconcave lifetime welfare function $U_i=U(\mathbf{C}_i)$, with $\mathbf{C}_i\equiv(C_{i0},C_{i1},...,C_{iT})$
- Hicksian demands are $C_{it}=C_t(U_i,\mathbf{p}_i)$ where $\mathbf{p}_i\equiv(p_{i0},p_{i1},...,p_{iT})$ and $p_{it}\equiv\prod_{s=0}^t(1+r_{s+b_i})^{-1}.$

PROPOSITION 1 Comparisons within cohorts at same age: $C_{it} \geq C_{jt}$ implies $U_i \geq U_j$ whenever individuals i and j share the same year of birth if and only if consumption in all periods is a normal good.

The Welfare Cost of Income Risk

Define \widetilde{Y}_i as that certain present discounted value of lifetime income which would allow the individual to achieve the same expected utility. The consumption stream $\widetilde{\mathbf{C}}_i = \widetilde{\mathbf{C}}(EU_i)$ that would be chosen given \widetilde{Y}_i satisfies

$$\sum_{t} u_t(\widetilde{C}_{it}) \equiv E(\sum_{t} u_t(C_{it})) = EU_i.$$

PROPOSITION 2 Comparisons across individuals facing different income risk: $C_{it} \ge C_{jt}$ implies $EU_i \ge EU_j$ whenever individuals i and j share the same year of birth if and only if $\mathbf{C}_i = \widetilde{\mathbf{C}}(EU_i)$ whatever the distribution of future income. This is so if and only if $u_t(C_{it}) = -\alpha_t \exp(-\beta_t C_{it})$ $\alpha_t, \beta_t > 0, t > 0$.

• This holds exactly iff CARA. The sufficiency part is a special case of a more general result that decreasing absolute risk aversion (DARA) implies $C_{i0} < \widetilde{C}_{i0}$, ie that there is excess precautionary saving if higher incomes decrease risk aversion.

The Evolution of the Consumption Distribution: The Partial Insurance model

- ➤ The stochastic Euler equation is consistent with many stochastic processes for consumption. It does not say anything about the variance of consumption.
- ▶ In the full information perfect market model with separable preferences the variance of consumption is zero. In comparison with the self-insurance model the intertemporal budget constraint based on a single asset is violated.
- ▶ Partial insurance allows some additional insurance. For example, Attanasio and Pavoni (2005) consider an economy with moral hazard and hidden asset accumulation individuals now have hidden access to a simple credit market. They show that, depending on the cost of shirking and the persistence of the income shock, some partial insurance is possible. A linear insurance rule can be obtained as an 'exact' solution in a dynamic Mirrlees model with CRRA utility.

The introduction of two 'transmission parameters':

To capture the possibility of 'excess insurance' and also 'excess sensitivity', we define:

- ϕ_{bt} the degree to which permanent shocks ζ_{it} for individual i in birth cohort b in period t are 'insured'
 - ullet ψ_{bt} the degree to which transitory shocks $arepsilon_{it}$ are 'insured'
 - \bullet infact $1-\phi_{bt}$ and $1-\psi_{bt}$ are the fractions insured implying:

$$\Delta c_{it} \cong \Gamma_{bt} + \xi_{it} + \phi_{bt}\zeta_{it} + \psi_{bt}\varepsilon_{it}$$

where $\Delta c_{it} = \Delta \ln C_{it} - \Delta Z'_{it} \varphi^c$.

In this notation ϕ_{bt} and ψ_{bt} subsume π_{bt} and α_{bt} from the self-insurance model.

The key panel data moments

The panel data moments for log income are

$$\operatorname{cov}\left(\Delta y_{a,t}, \Delta y_{a+s,t+s}\right) = \begin{cases} \operatorname{var}\left(\zeta_{a,t}\right) + \operatorname{var}\left(\Delta v_{a,t}\right) & \text{for } s = 0\\ \operatorname{cov}\left(\Delta v_{a,t}, \Delta v_{a+s,t+s}\right) & \text{for } s \neq 0 \end{cases}$$
 (6)

- The covariance term $\operatorname{cov}\left(\Delta v_{a,t}, \Delta v_{a+s,t+s}\right)$ depends on the serial correlation properties of v. If v is an MA(q) serially correlated process, then $\operatorname{cov}\left(\Delta v_{a,t}, \Delta v_{a+s,t+s}\right)$ is zero whenever |s|>q+1.
- Allowing for an MA(q) process, for example, adds q-1 extra parameter (the q-1 MA coefficients) but also q-1 extra moments, so that identification is unaffected.

The panel data moments for log consumption are

$$\operatorname{cov}\left(\Delta c_{a,t}, \Delta c_{a+s,t+s}\right) = \phi_{b,t}^{2} \operatorname{var}\left(\zeta_{a,t}\right) + \psi_{b,t}^{2} \operatorname{var}\left(\varepsilon_{a,t}\right) + \operatorname{var}\left(\xi_{a,t}\right) \tag{7}$$

for s = 0 and zero otherwise.

• The covariance between income growth and consumption growth is:

$$\operatorname{cov}\left(\Delta c_{a,t}, \Delta y_{a+s,t+s}\right) = \begin{cases} \phi_{b,t} \operatorname{var}\left(\zeta_{a,t}\right) + \psi_{b,t} \operatorname{var}\left(\varepsilon_{a,t}\right) \\ \psi_{b,t} \operatorname{cov}\left(\varepsilon_{a,t}, \Delta v_{a+s,t+s}\right) \end{cases}$$
(8)

for s = 0, and s > 0 respectively.

• If v is serially uncorrelated ($v_{i,a,t} = \varepsilon_{i,a,t}$), then $\operatorname{cov}(\Delta c_{a,t}, \Delta y_{a+s,t+s}) = -\psi_{b,t} \operatorname{var}(\varepsilon_{a,t})$ for s=1 and 0 otherwise.

A simple summary the panel data moments:

$$\operatorname{var}(\Delta y_{t}) = \operatorname{var}(\zeta_{t}) + \operatorname{var}(\varepsilon_{t}) + \operatorname{var}(\varepsilon_{t-1})$$

$$\operatorname{cov}(\Delta y_{t}, \Delta y_{t-1}) = -\operatorname{var}(\varepsilon_{t-1})$$

$$\operatorname{cov}(\Delta y_{t+1}, \Delta y_{t}) = -\operatorname{var}(\varepsilon_{t})$$

$$\operatorname{var}(\Delta c_{t}) = \phi_{t}^{2} \operatorname{var}(\zeta_{t}) + \psi_{t}^{2} \operatorname{var}(\varepsilon_{t})$$

$$\operatorname{cov}(\Delta c_{t}, \Delta y_{t}) = \phi_{t} \operatorname{var}(\zeta_{t}) + \psi_{t} \operatorname{var}(\varepsilon_{t})$$

$$\operatorname{cov}(\Delta c_{t}, \Delta y_{t+1}) = -\psi_{t} \operatorname{var}(\varepsilon_{t})$$

.

• Under additional assumptions, Blundell and Preston (1998) turn these into identifying moments for repeated cross-section data.

Note that there is a degree of overidentification

• For example,

$$\phi_t = \frac{\operatorname{var}(\Delta c_t)}{\operatorname{cov}(\Delta y_t, \Delta c_t)}$$

and

$$\phi_t = \frac{\operatorname{cov}(\Delta c_t, \Delta y_t)}{\operatorname{cov}(\Delta y_t, \Delta y_{t-1} + \Delta y_t + \Delta y_{t+1})}$$

•

ullet Thus ϕ_t is generally overidentified (note measurement error case)

.

• In estimation use optimal weighted moment estimator and allow for MA(1) in the transitory component.

Assessing the identification strategy

- To judge the ability of this model to identify the underlying parameters and processes, Blundell, Low and Preston (2004) simulate a stochastic dynamic economy.
- In the base case the subjective discount rate $\delta=0.02$, also allow δ to take values 0.04 and 0.01. Also a mixed population with half at 0.02 and a quarter each at 0.04 and 0.01.
- In such cases the permanent variance follows a two-state, first-order Markov process with the transition probability between alternative variances, $\sigma_{\zeta,L}^2$ and $\sigma_{\zeta,H}^2$
- For each experiment, BLP simulate consumption, earnings and asset paths for 50,000 individuals. To obtain estimates of the variance for each period, a random cross sectional samples of 2000 individuals for each of 20 periods is drawn See Figure 5.

THE US PSID/CEX DATA

- → PSID 1968-1996: (main sample 1978-1992)
 - ullet Construct all the possible panels of 2 \leq length \leq 15 years
 - Sample selection: male head aged 30-62, no SEO/Latino subsamples
 - Total family income and food at home are dated 1978-1992.
- ◆ CEX 1980-1998: (main sample 1980-1992)
 - Focus on 5-quarters respondents only (annual expenditure measures)
 - Sample selection similar to the PSID
 - Eliminate those with zero income/expenditure

A comparison of both data sources is in Blundell, Pistaferri and Preston (2004)

Note also the source for the UK BHPS and Spanish ECFP panel data.

Using a structural demand relationship to link consumption data in the CEX with the Income panel data in the PSID

- Food consumption, income and total expenditure in CEX, but a repeated crosssection
- Food consumption and income in the PSID panel.
 - ▶ Plus lots of demographic and other matching information in each year.
- Inverse structural demand equation acts as an 'imputation' equation Table III.
- Implications for consumption and income inequality Figure 6
- Covariance structure of consumption and income Table IV

Partial Insurance and the other 'structural' parameters

"excess smoothness" or "excess insurance" relative to self-insurance

Table Va:

- College-no college comparison
- Younger versus older cohorts

Figures 7a,b: show implications for variances of permanent and transitory shocks

- Within cohort and education analysis changes the balance between the distribution of permanent and transitory shocks but not the value of the transmission parameters.
 - Younger in the sample also display less insurance: $\widehat{\phi}$ is .87 (.11)
 - ullet Strongly reject constancy of ϕ and ψ when food in PSID is used
 - Table Vb Results for the Spanish and the British data.

Partial Insurance and Family Labour Supply

Total income Y_t is the sum of two sources, Y_{1t} and $Y_{2t} \equiv W_t h_t$

Assume the labour supplied by the primary earner to be fixed. Income processes

$$\Delta \ln Y_{1t} = \gamma_{1t} + \Delta u_{1t} + v_{1t}$$

$$\Delta \ln W_t = \gamma_{2t} + \Delta u_{2t} + v_{2t}$$

Household decisions to be taken to maximise a household utility function

$$\sum_k (1+\delta)^{-k} [U(C_{t+k}) - V(h_{t+k})].$$

$$\Delta \ln C_{t+k} \, \simeq \, \sigma_{t+k} \Delta \ln \lambda_{t+k}$$

$$\Delta \ln h_{t+k} \, \simeq \, -\rho_{t+k} [\Delta \ln \lambda_{t+k} + \Delta \ln W_{t+k}]$$
 with $\sigma_t \equiv U_t'/C_t U_t'' < 0$, $\rho_t \equiv -V_t'/h_t V_t'' > 0$.

The key panel data moments become:

$$Var(\Delta c_{t}) \simeq \beta^{2}\phi^{2}s^{2}Var(v_{1t}) + \beta^{2}\phi^{2}(1-\rho)^{2}(1-s)^{2}Var(v_{2t})$$

$$+2\beta^{2}\phi^{2}(1-\rho)s(1-s)Cov(v_{1t}, v_{2t})$$

$$Var(\Delta y_{1t}) \simeq Var(v_{1t}) + \Delta Var(u_{1t})$$

$$Var(\Delta y_{2t}) \simeq (1-\psi)^{2}Var(u_{2t}) - \beta^{2}\rho^{2}s^{2}Var(v_{1t})$$

$$+\beta^{2}\phi^{2}(1-\rho)^{2}Var(v_{2t}) - 2\beta^{2}\phi\rho(1-\rho)sCov(v_{1t}, v_{2t})$$

$$Var(\Delta w_{t}) \simeq Var(v_{2t}) + \Delta Var(u_{2t})$$

where

•
$$\beta = 1/(\phi + \rho(1-s))$$
.

• s_t is the ratio of the mean value of the primary earner's earnings to that of the household $\overline{Y}_{1t}/\overline{Y}_t$

- When the labour supply elasticity $\rho>0$ then the secondary worker provides insurance for shocks to y_1
- Figure 8: shows interesting implications for the variance of transitory shocks to household income

reconciles the Gottshalk and Moffitt results and relates to recent references:

- Attanasio, Berloffa, Blundell and Preston (2002, EJ), 'From Earnings Inequality to Consumption Inequality'
- Attanasio, Sanchez-Marcos and Low (2005, JEEA), 'Female labor Supply as an Insurance Against Idiosyncratic Risk'
- Heathcote, Storesletten and Violante (2006), 'Consumption and Labour Supply with Partial Insurance'
- (• All references on webpage)

Partial Insurance: Family Transfers and Taxes

Table VI:

- Tax system and transfers provide some insurance to permanent shocks
- ⊳ food stamps for low income households studied in Blundell and Pistaferri (2003), 'Income volatility and household consumption: The impact of food assistance programs', special conference issue of JHR,

Partial Insurance: Wealth and Durables

- Excess sensitivity among low wealth households: select (30%) initial low wealth.
 also consider
- Impact of durable purchases as a smoothing mechanism?

BLS and IFS studies have noted the increased variance when durable purchases are included.

Table VII

- Excess sensitivity among low wealth households
- For poor households at least absence of simple credit market
- Excess sensitivity among low wealth households even more impressive use of durables among low wealth households: Browning, and Crossley (2003), "Shocks, stocks and socks: Consumption smoothing and the replacement of durables"

Summary

- Objective to understand the relationship between income and consumption inequality
- Reconcile the results in three literatures:
 - inequality over time in consumption, income and earnings
 - econometric work on panel data income and earnings processes
- the work on intertemporal consumption and insurance, especially on 'excess' insurance and excess sensitivity
- Important role for two transmission parameters that identify generalisations of the self-insurance model
- ◄ Identify the contribution of both transitory and permanent shocks

What has been found?

- Distinctive and resilient features in the dynamics of income and consumption distributions
- The relationship between consumption and income inequality over the 1980s can
 be explained by the dramatic change in the mix of permanent and transitory income
 shocks over this period.
- A predominance of uninsured permanent shocks in early 1980s in US and UK, and early 1990s in Spain other countries?
- Liquidity distortions among lower wealth groups
- Durable purchases as insurance to transitory shocks among lower wealth groups
- Evidence of 'secondary worker' labour supply as insurance to primary workers transitory earnings shocks in early 1980s Gottshalk and Moffitt.

What of future research?

- Within household insurance: Heathcote, Storesletten and Violante (2006), Lise and Seitz (2005)
- Differential persistence across the distribution: optimal welfare results for low wealth/low human capital groups: optimal earned income tax-credits.
- ✓ Understanding the mechanism and market incentives for excess insurance -Krueger and Perri (2006) and Attanasio and Pavoni (2006).
- ◄ Advance information and/or predictable life-cycle income trends Cuhna, Heckman and Navarro (2005), see also Primiceri and van Rens (2006).
- ◄ Alternative panel data income processes e.g. Guvenen (2005).
- The specific use of credit and durables Davis, Kubler and Willen (2005), Browning and Crossley (2004)

Figure 1a: Consumption and Income Inequality in the UK

Authors calculations.

Variance of log equivalised, cons rebased at 1977, smoothed.

Figure 1b: Consumption and Income Inequality in the US

Source: Blundell, Pistaferri and Preston (2004): CEX/PSID Variance of log equivalised, cons rebased at 1977, smoothed

Figure 1c: Consumption and Income Inequality in Japan

Source: Othake and Saito (1998); NSFIE Var (log) with cons rebased at 1979

Figure 1d: Consumption and Income Inequality in Australia

Source: HES; Barrett, and Crossley and Worswick (2000) Variance of log equivalised (OECD), cons rebased at 1975

Figure 1e: Consumption and Income Inequality in the UK

(variance of log equivalised, cons rebased at 1978)

Table I: Consumption and Income Inequality 1978-1992

UK			
Goodman and Oldfield (IFS, 2004)	1978	1986	1992
Income Gini	.23	.29	.33
Consumption Gini	.20	.24	.26
US			
Johnson and Smeeding (BLS, 2005)	1981	1985	1990
Income Gini	.34	.39	.41
Consumption Gini	.25	.28	.29

Both studies bring the figures up to 2001.

Relate to:

- Atkinson (1997): UK income Gini rises 10 points late 70s to early 90s.
- Cutler and Katz (1992): US consumption Gini 65% of income inequality, 80->88.
- Gottschalk and Moffitt (1994): 1980s transitory shocks account for 50% inequality growth

growth
Note: In comparison with the Gini, a small transfer between two individuals a fixed income distance apart lower in the distribution will have a higher effect on the variance of logs.

Figure 2a: The distribution of log consumption: US CEX

COHORT 1950-59 Age 31-35

Source: Battistin, Blundell and Lewbel (2005)

Figure 2b: The distribution of log income: US CEX

Age 31-35, income

Source: Battistin, Blundell and Lewbel (2005)

theoretical percentiles 7 8 9 10 11 12 13) 10 11 observed percentiles 8 12 13 Standard Deviation of Logs: 0.4532 Skewness: 0.0002 Kurtosis: 0.0669 P-values: Kolmogorov-Smirnov: 0.3343 Skewness: 0.9954 Kurtosis: 0.0505

Figure 2c: The distribution of log consumption: US CEX

COHORT 1950-59 Age 36-40

Source: Battistin, Blundell and Lewbel (2005)

Figure 2d: The distribution of log consumption: US CEX

COHORT 1950-59 age 41-45

Source: Battistin, Blundell and Lewbel (2005)

Figure 3a: The distribution of log consumption: UK FES

COHORT 1940-49, AGE 41-45

Source: Battistin, Blundell and Lewbel (2005)

Figure 3b: The distribution of log consumption: UK FES

COHORT 1940-49, AGE 51-55

Source: Battistin, Blundell and Lewbel (2005)

Figure 3c: The distribution of log income: UK FES

COHORT 1940-49, AGE 41-45

Source: Battistin, Blundell and Lewbel

Figure 4a: The cohort evolution of log consumption distribution: US CEX

Source: Battistin, Blundell and Lewbel

Figure 4b: Cohort Consumption Inequality in the US by Cohort

Source: Blundell, Pistaferri and Preston (2005) Variance of log equivalised, PSID

Figure 4c: Consumption Inequality over the Life-Cycle in Japan

Figure 4d: Cohort Inequality in the UK

Figure 4e: Cohort Consumption Inequality in the UK

(variance of log equivalised)

Table IIa: The Covariance Structure of Income - PSID

Year	$\mathbf{var}(\Delta \mathbf{y}_t)$	$\mathbf{cov}(\Delta \mathbf{y}_{t+1}, \Delta \mathbf{y}_t)$	$\mathbf{cov}(\Delta \mathbf{y}_{t+2}, \Delta \mathbf{y}_t)$
1980	0.0830	-0.0224	-0.0019
	(0.0088)	(0.0041)	(0.0030)
1981	0.0813	-0.0291	-0.0038
	(0.0090)	(0.0049)	(0.0035)
1985	0.0927	-0.0321	-0.0012
	(0.0069)	(0.0053)	(0.0042)
1986	0.1153	-0.0440	-0.0078
	(0.0120)	(0.0094)	(0.0061)
1987	0.1185	-0.0402	0.0014
	(0.0115)	(0.0052)	(0.0046)
1992	0.1196 (0.0079)	NA	NA

Source: Blundell, Pistaferri and Preston (2005) Variance of log equivalised, PSID

Table IIb: The Covariance Structure of Income - BHPS

Year	$\mathbf{var}(\Delta \mathbf{y}_t)$	$\mathbf{cov}(\Delta \mathbf{y}_{t+1}, \Delta \mathbf{y}_t)$	$\mathbf{cov}(\Delta \mathbf{y}_{t+2}, \Delta \mathbf{y}_t)$
1996	0.0685	-0.0205	0.0019
	(.0049)	(.0034)	(.0029)
1997	0.0832	-0.0219	-0.0029
	(.0070)	(.0036)	(.0036)
1998	0.0802	-0.0235	-0.0008
	(.0063)	(.0036)	(.0032)
1999	0.0844	-0.0179	-0.0006
	(.0074)	(.0041)	(.0040)

Source: Etheridge (2006) Variance of log equivalised, BHPS

Table IIc: The Covariance Structure of Income - ECFP

Year	$\mathbf{var}(\Delta \mathbf{y}_t)$	$\mathbf{cov}(\Delta \mathbf{y}_{t+1}, \Delta \mathbf{y}_t)$	$\mathbf{cov}(\Delta \mathbf{y}_{t+2}, \Delta \mathbf{y}_t)$
1986	0.0890	-0.0387	0.0041
	(0.0088)	(0.0041)	(0.0030)
1988	0.09123	-0.0411	0.0103
	(0.0090)	(0.0049)	(0.0035)
1990	0.0817	-0.0370	0.0092
	(0.0069)	(0.0053)	(0.0042)
1992	0.0851	-0.0380	0.0101
	(0.0120)	(0.0094)	(0.0061)
1995	0.0895	-0.0411	0.0090
	(0.0115)	(0.0052)	(0.0046)

Source: Casado García, Labeaga and Preston (2005) Variance of log equivalised, ECFP

Figure 5: A Simulated Economy, permanent shock variance estimates

Source: Blundell, Low and Preston (2004)

Table III: The Demand For Food

Variable	Estimate	Variable	Estimate	Variable	Estimate
$\ln c$	0.8503 (0.1511) (0.012)	lnc * 1992	0.0037 (0.0056) (0.083]	Family size	0. 0272 (0.0090)
ln c *High School dropout	0.0730 0.0718) 0.050]	ln c *One child	0.0202 0.0336) 0.150]	$\ln p_{food}$	-0.9784 0.2160)
ln c *High School graduate	0.0827 (0.0890) (0.027]	lnc *Two children	-0. 0250 0.0383) 0.120]	$\ln p_{transports}$	5. 5376 (8.0500)
High school dropout	-0. 7030 0.6741)	ln c *Three children+	0.0087 (0.0340) (0.197]	ln pfuel+utils	-0.6670 (4.7351)
High school graduate	-0.8458 0.8298)	Age	0.0122 0.0085)	White	0.0769 (0.0129)
		Age^2	-0.0001 0.0001)	Constant	-0.6404 0.9266)
OID test				20. 9 (l.f. 18; χ ² p-v	
Test that income elasticity of	loes not va	ry over time		27. 6 (d.f. 12; χ² p-v	

Figure 6: Variance of log C in the PSID and in the CEX

Source: Blundell, Pistaferri and Preston (2004)

Table IVa: The Covariance Structure of Consumption

Year	$\operatorname{var}\left(\Delta c_{t}\right)$	$cov (\Delta c_{t+1}, \Delta c_t)$) cov $(\Delta c_{t+2}, \Delta c_t)$
1980	0.1319	-0.0599	0.0021
	(0.0111)	(0.0092)	(0.0057)
1981	0.1231	-0.0576	0.0030
	(0.0121)	(0.0077)	(0.0045)
1982	0.1316	-0.0624	0.0004
	(0.0106)	(0.0085)	(0.0052)
1983	0.1476	-0.0676	-0.0017
	(0.0140)	(0.0074)	(0.0063)
1984	0.1656	-0.0781	-0.0129
	(0.0136)	(0.0125)	(0.0087)
1985	0.1816	-0.0866	NA
	(0.0221)	(0.0192)	
1990	0.1676	-0.0601	-0.0062
	(0.0206)	(0.0060)	(0.0065)
1991	0.1520	-0.0649	NA
	(0.0104)	(0.0088)	Source: Blundell, Pistaferri and Preston (2005) Variance of log equivalised, PSID and CEX

Table IVb: The Covariance of Consumption and Income

Year	$\mathbf{cov}(\Delta \mathbf{y}_t, \Delta \mathbf{c}_t)$	$\mathbf{cov}(\Delta \mathbf{y}_t, \Delta \mathbf{c}_{t+1})$	$\mathbf{cov}(\Delta \mathbf{y}_{t+1}, \Delta \mathbf{c}_t)$
1981	0.0104	-0.0054	-0.0051
	(0.0037)	(0.0036)	(0.0033)
1982	0.0165	-0.0015	-0.0056
	(0.0038)	(0.0041)	(0.0033)
1983	0.0212	-0.0057	-0.0078
	(0.0045)	(0.0043)	(0.0048)
1984	0.0226	-0.0107	-0.0055
	(0.0050)	(0.0045)	(0.0045)
1985	0.0181	-0.0034	-0.0023
	(0.0064)	(0.0064)	(0.0056)
1986	0.0166	NA	0.0001
	(0.0049)		(0.0053)
Test o	$cov(\Delta y_{t+1}, \Delta c_t)$	= 0 for all t	p-value 0.3305
Test o	$cov(\Delta y_{t+2}, \Delta c_t)$	= 0 for all t	p-value 0.6058

Table Va: Structural Estimates: College and Cohort Decomposition: PSID/CEX

		Whole sample	No College	Born 1940s	Born 1930s
σ_{ζ}^{2}	1980	0.0076 (.0036)	0.0052 (.0044)	0.0065 (.0040)	0.0072 (.0072)
	1982	0.0206 (.0052)	0.0156 (.0065)	0.0208 (.00632)	0.0197 (.0100)
	1986	0.0252 (.0077)	0.0244 (.0094)	0.0219 (.0114)	0.0181 (.0066)
$\sigma_{arepsilon}^2$	1980	0.0318 (.0043)	0.0332 (.0057)	0.0282 (.0059)	0.0282 (.0066)
	1984	0.0351 (.0042)	0.0402 (.0063)	0.0218 (.0048)	0.0311 (.0117)
	1986	0. 0444 (.0103)	0.0446 (.0081)	0.0542 (.0247)	0.0442 (.0186)
ϕ		0.6167 (.1118)	0.8211 (.2232)	0.7445 (.2124)	0.5626 (.2535)
Ψ		0.0550 (.0358)	0.0969 (.0417)	0.0845 (.0457)	0.0215 (.0592)
p-value, equal ϕ		33%	81%	16%	45%
p-value, equal ψ		58%	46%	43%	14%

Figure 7a: Variance of permanent shocks

Figure 7b: Variance of transitory shocks

Table Vb: Structural Estimates: Cohort Decomposition: ECFP

	Year		Cohort	
		1965-1955	1955-1945	1945-1935
σ_{ς}^2	1987	0.021	0.013	0.011
	1991	0.045	0.037	0.023
	1995	0.054	0.039	0.031
σ_{ε}^2	1987	0.013	0.019	0.009
	1991	0.033	0.024	0.020
	1995	0.049	0.043	0.042
	θ	0.101	0.097	0.198
	σ_{ξ}^2	0.016	0.012	0.011
	φ	0.981	0.923	0.851
	ψ	0.221	0.137	0.097
P-valu	e test of equal ϕ	17%	41%	61%
P-value	e test of equal ψ	22%	29%	16%

Source: Casado-García, Labeaga and Preston (2005)

Figure 8: Variance of transitory shocks for male earnings and for family income

Table VI: Structural Estimates: Family Transfers, Taxes and Earnings

	Baseline	Excluding	Earnings
		help from	rather than
		relatives	Net Income
φ	0.6167 (0.1118)	0.6531 (0.1187)	0.4368 (0.0977)
Ψ	0.0550 (0.0358)	0.0532 (0.0359)	0.0574 (0.0286)

Source: Blundell, Pistaferri and Preston (2005)

Table VII: Structural Estimates: Wealth and Durables

	Non. dur.	Inc. dur.
	Low	Low
	wealth	wealth
φ	0.9589 (0.3696)	0.8800 (0.3131)
Ψ	0.2800 (0.0896)	0.4159 (0.1153)

References

- [1] Abraham, A. and N. Pavoni (2005), 'Efficient Allocations with Moral Hazard and Hidden Borrowing and Lending,", *JEEA*, 3(2-3), 370-381.
- [2] Aiyagari, R. (1994), "Uninsured risk and aggregate saving", Quarterly Journal of Economics, 109, 659-84
- [3] Altonji, J., A.P. Martins, and A. Siow (2002), "Dynamic factor models of consumption, hours, and income", Research in Economics, **56**, 3-59.
- [4] Altonji, J., and L. Segal (1996), "Small-sample bias in GMM estimation of covariance structures", *Journal of Business and Economic Statistics*, **14**, 353-66.
- [5] Altonji, J., and A. Siow (1987), "Testing the response of consumption to income changes with (noisy) panel data", Quarterly Journal of Economics, 102, 293-28.
- [6] Altonji, J., A.A. Smith and I Vidangos (2006), 'Modeling Earnings Dynamics', mimeo, Yale, April.
- [7] Alvarez, F. and U. Jermann (2000), "Efficiency, equilibrium and asset pricing with risk of default", *Econometrica*, **68**, 775-97.
- [8] Atkinson, A.B. (1997), 'Bringing Income Distribution in From the Cold', *The Economic Journal*, March.
- [9] Attanasio, O., E. Battistin and H. Ichimura (2004), "What really happened to consumption inequality in the US?", University College London, *mimeo*.
- [10] Attanasio, O., G. Berloffa, R. Blundell and I. Preston (2002), "From Earnings Inequality to Consumption Inequality", *Economic Journal*, Vol.112, No. 478, C52-C59, March.
- [11] Attanasio, O., and S. Davis (1996), "Relative wage movements and the distribution of consumption", *Journal of Political Economy*, **104**, 1227-62.
- [12] Attansio, O. V. Sanchez-Marcos and H. Low (2005), 'Female abor Supply as an Insurance Against Idiosyncratic Risk', *JEEA*, May, 755-764.
- [13] Attansio, O and N. Pavoni (2006), 'Risk Sharing in Private Information Models with Asset Accumulation: Explaining the Excess Smoothness of Consumption', memeo, UCL, May.
- [14] Attanasio, O., and V. Rios Rull (2000), "Consumption smoothing in island economies: Can public insurance reduce welfare?", European Economic Review, 44, 1225-58.
- [15] Attanasio, O., and G. Weber (1995), "Is consumption growth consistent with intertemporal optimization: Evidence from the Consumer Expenditure Survey", *Journal of Political Economy*, **103**, 1121-57.
- [16] Auerbach, A.J., and D. Feenberg (2000), "The significance of Federal Taxes as automatic stabilizers", *Journal of Economic Perspectives*, **14** (Summer), 37-56.
- [17] Baker, Michael (2003), "Earnings Dynamics and Inequality among Canadian Men, 1976–1992: Evidence from Longitudinal Income Tax Records", Journal of Labor Economics, 21(2), 267-288.
- [18] Barrett, G.F., T.F. Crossley and C. Worswick (2000) "Consumption and income inequality in Australia", *Economic Record*, 76, 116-138

- [19] Battistin, E. R. Blundell and A.lewbel (2005), 'Why is Consumption more Log Normal than Income? Gibrat's Law Revisited', Mimeo, Institute for Fiscal Studies, December.
- [20] Blundell, R., H. Low and I. Preston (2004), "Income Risk and Consumption Inequality: A Simulation Study", Institute for Fiscal Studies WP04/26 (http://www.ifs.org.uk/workingpapers/wp0426.pdf).
- [21] Blundell, R., and L. Pistaferri (2003), "Income volatility and household consumption: The impact of food assistance programs", *Journal of Human Resources*, Vol 38, 1032-1050.
- [22] Blundell, R., L. Pistaferri and I. Preston (2001), "Partial Insurance, Information and Cosnumption Dynamics", SED Meeting, New York, mimeo University College London, November.
- [23] Blundell, R., L. Pistaferri and I. Preston (2004), "Imputing consumption in the PSID using food demand estimates from the CEX", Institute for Fiscal Studies, WP04/27 (http://www.ifs.org.uk/workingpapers/wp0427.pdf).
- [24] Blundell, R., L. Pistaferri and I. Preston (2005), "Consumption Inequality and Partial Insurance", Institute for Fiscal Studies November 2004, WP04/27, revised May 2005.
- [25] Blundell, R., and I. Preston (1991), 'The distinction between income and consumption in the measurement of household welfare', Institute for Fiscal Studies Working Paper, 91/6, October.
- [26] Blundell, R., and I. Preston (1995), 'Income, Expenditure and the Living Standards of UK Households' Fiscal Studies, Vol. 16, No.3, 40-54, 1995.
- [27] Blundell, R., and I. Preston (1998), "Consumption inequality and income uncertainty", Quarterly Journal of Economics 113, 603-640.
- [28] Blundell, R., and T. Stoker (2004), "Aggregation and Heterogeneity", forthcoming in *Journal of Economic Literature*.
- [29] Bowlus, A. and J.-M. Robin, (2002), Twenty years of rising inequality in US lifetime labor income values, Mimeo, University of Western Ontario.
- [30] Brewer, M., A. Goodman, J Shaw and A Shephard (2005), 'Poverty and Inequality in Britain: 2005' IFS Commentary 99, March.
- [31] Brewer, M., A. Goodman, A Leicester (2006), 'Household Spending in Britain' Joseph Rountree Foundation, The Policy Press, April.
- [32] Browning, M., and T. Crossley (2003), "Shocks, stocks and socks: Consumption smoothing and the replacement of durables", McMaster Economics Working Paper 2003-7.
- [33] Bonhomme, S and J-M Robin (2006), "Generalized Nonparametric Deconvolution with an Application to Earnings Dynamics", presented at *ESEM 2006*, Vienna, August.
- [34] Bowlus, A., J.-M. Robin (2004), "Twenty Years of Rising Inequality in US Lifetime Labor Income Values", *Review of Economic Studies*, vol. 71, 3, pp. 709-742.
- [35] Campbell, J.Y. (1987) "Does Saving Anticipate Declining Labor Income? An Alternative Test of the Permanent Income Hypothesis", Econometrica, 55(6), 1249-73.

- [36] Campbell, J. Y. (1993), "Intertemporal Asset Pricing Without Consumption Data", American Economic Review LXXXIII, 487-512.
- [37] Campbell, J.Y. and A. Deaton (1989) 'Why is Consumption so Smooth?", The Review of Economic Studies, 56, 357-74.
- [38] Carroll, C. (2001), "Precautionary saving and the marginal propensity to consume out of permanent income", NBER Working Paper 8233.
- [39] Cochrane, John H., "A Simple Test of Consumption Insurance", Journal of Political Economy IC (1991), 957-976.
- [40] Crossley, T. and K. Pendakur (2004), 'Consumption Inequality' mimeo McMaster University, February.
- [41] Cunha, F., Heckman, J., and Navarro, S. (2004). "Separating heterogeneity from uncertainty an Aiyagari-Laitner economy", Paper presented at the Goldwater Conference on Labor Markets in Arizona, March, 2004.
- [42] Cuhna, F. J. J. Heckman & S. Navarro (2005) 'Separating Uncertainty from Heterogeneity in Life Cycle Earnings', Oxford Economic Papers, Oxford University Press, vol. 57(2), pages 191-261, April
- [43] Cutler, David and Lawrence Katz, "Macroeconomic Performance and the Disadvantaged", Brookings Papers on Economic Activity, II (1991), 1-61.
- [44] Davis, S.J. (2003), "Comments on "The Welfare Consequences of the Increase in Inequality in the United States", Prepared for the NBER Macro Annual, July.
- [45] Davis, S.J., F. Kubler and P. Willen (2005), "Borrowing costs and the demand for equity over the life cycle," Working Papers 05-7, Federal Reserve Bank of Boston.
- [46] Cutler, D., and L. Katz (1992), "Rising inequality? Changes in the distribution of income and consumption in the 1980s", American Economic Review, 82, 546-51.
- [47] Deaton, A. (1992), *Understanding Consumption*. Baltimore: John Hopkins University Press.
- [48] Deaton, A., and C. Paxson (1994), "Intertemporal choice and inequality", *Journal of Political Economy*, **102**, 384-94.
- [49] Dynarski, S., and J. Gruber (1997), "Can families smooth variable earnings?", Brooking Papers on Economic Activity, 1, 229-305.
- [50] Engen, E., and J. Gruber (2001), "Unemployment insurance and precautionary savings", Journal of Monetary Economics, 47, 545-79.
- [51] Flavin, M. A. (1981), "The Adjustment of Consumption to Changing Expectations about Future Income," *Journal of Political Economy*, vol. 89, no.5.
- [52] Goodman, A. and Z. Oldfield (2004), "Permanent Differences? Income and Expenditure Inequality in the 1990s and 2000s" Report Series No 66, London: IFS.
- [53] Gottschalk, P. and R. Moffitt, (1994), "The growth of earnings instability in the U.S. labor market", Brookings Papers on Economic Activity, 217–54.
- [54] Gottschalk, P. and R. Moffitt, (1995), "Trends in the autocovariance structure of earnings in the U. S.: 1969-1987", Mimeo, John Hopkins University.

- [55] Gottschalk, P. and R. Moffitt, (2002), Trends in the transitory variance of earnings in the United States, Economic Journal 112, C68–73.
- [56] Gottschalk, P. and T. Smeeding, 1997), 'Cross-National Comparisons of Earnings and Income Inequality', Journal of Economic Literature, XXXV, 633-687.
- [57] Gourinchas, P. O. and J. Parker (2002) 'Consumption Over the Life Cycle', with P. O. Gourinchas, *Econometrica*, 70, 47-89.
- [58] Gruber, J. (1997), 'The Consumption Smoothing Benefits of Unemployment Insurance', American Economic Review, March, Vol 87(1), 192-205.
- [59] Guvenen, F. (2005), Learning your Earning: Are Labor Income Shooks Really Very Persistant', mimeo, University of Texas at Austin.
- [60] Haider, S.J. (2001), "Earnings Instability and Earnings Inequality of Males in the United States: 1967-1991", Journal of Labor Economics, 19, 799-836.
- [61] Hall, Robert E. (1978), "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," *Journal of Political Economy*, 86, 971-987.
- [62] Hall, R.E. (1988), "Intertemporal Substitution in Consumption", Journal of Political Economy, 96(2), 339-357.
- [63] Hall, R., and F. Mishkin (1982), "The sensitivity of consumption to transitory income: Estimates from panel data of households", *Econometrica*, **50**, 261-81.
- [64] Hansen, L.P., Roberds W. and T.J. Sargent (1991), 'Time Series Implications of Present Value Budget Balance and of MartingaleModels of Consumption and Taxes', in Hansen, L.P. and T.J. Sargent: Rational Expectations Econometrics, Boulder: Westview, 1991: pp.121-161.
- [65] Hayashi, F., J. Altonji, and L. Kotlikoff (1996), "Risk sharing between and within families", *Econometrica*, **64**, 261-94.
- [66] Heathcote, J., K. Storesletten and G. Violante (2004), "The Macroeconomic Implications of Rising Wage Inequality in the United States", Working Paper, January.
- [67] Heathcote, J., K. Storesletten and G. Violante (2006), "Consumption and Labour Supply with Partial Insurance' seminar notes, May.
- [68] Hill, M. (1992), The Panel Study of Income Dynamics: A user's guide, Newbury Park, California: Sage Publications.
- [69] Hurst, E., and F. Stafford (2003), "Home is where the equity is: Liquidity constraints, refinancing and consumption", *Journal of Money, Credit, and Banking*, forthcoming.
- [70] Jappelli, T., and L. Pistaferri (2004), "Intertemporal choice and consumption mobility", University of Salerno and Stanford University, *mimeo*.
- [71] Johnson, D.S. and T.M. Smeeding (1998), "Measuring the Trends in Inequality of Individuals and Families: Income and Consumption" BLS, March.
- [72] Johnson, D.S., T.M. Smeeding and B.R. Torrey (2005), United States Inequality through the Prisms of Income and Consumption', *Monthly Labor Review*, 11-24, April.
- [73] Juhn, C., K. M. Murphy, and B. Pierce, (1993), Wage inequality and the rise in returns to skill, Journal of Political Economy 101, 410–42.

- [74] Kehoe, T., and D. Levine (2001), "Liquidity constrained markets versus debt constrained markets", *Econometrica*, **69**, 575-98
- [75] Kniesner, T., and J. Ziliak (2002a), "Tax reform and automatic stabilization", American Economic Review, 92, 590-612.
- [76] Kniesner, T., and J. Ziliak (2002b), "Explicit versus Implicit Income Insurance", Journal of Risk and Uncertainty, 25, 5-20.
- [77] Kotlikoff, L., and A. Spivak (1981), "The family as an incomplete annuities market", Journal of Political Economy, 89, 372-91.
- [78] Krueger, D. and Fabrizio Perri (2005) "Understanding Consumption Smoothing: Evidence from the U.S. Consumer Expenditure Data", *Journal of the European Economic Association*, vol. 3(2-3), pages 340-349, 04/05.
- [79] Krueger, D., and F. Perri (2006), "Does Income Inequality Lead to Consumption Inequality? Evidence and Theory", *Review of Economic Studies*, vol. 73(1), pp 163-193.
- [80] Lise, J. and S. Seitz (2005), 'Consumption Inequality and Intra-Household Allocations' mimeo Queens University, presented and the Society for Economic Dynamics, 2005.
- [81] Low, H., C.Meghir, L.Pistaferri (2006), Wage Risk and Employment Risk over the Life-Cycle', mimeo, IFS, April.
- [82] MaCurdy, T. (1982), "The use of time series processes to model the error structure of earnings in a longitudinal data analysis", Journal of Econometrics, 18, 82-114.
- [83] Mankiw, M., and M. Kimball (1992), "Precautionary saving and the timing of taxes", Journal of Political Economy, 97, 863-79.
- [84] Meghir, C., and L. Pistaferri (2004), "Income variance dynamics and heterogeneity", Econometrica, 72(1), 1-32.
- [85] Meyer, B. and J. Sullivan (2001), "The living conditions of single mothers in the 19080s and 1990s", NBER Working Paper 8298, May.
- [86] Meyer, B. and J. Sullivan (2003), "Measuring the Well-Being of the Poor Using Income and Consumption', Journal of Human Resources, 1180-220.
- [87] Moffitt, R., and P. Gottschalk (1994), "Trends in the autocovariance structure of earnings in the US: 1969-1987", Brown University, mimeo.
- [88] Moffitt, R., and P. Gottschalk (2002), "Trends in the Transitory Variance of Earnings in the United States", *Economic Journal*, vol. 112(127), pages C68-C73, March.
- [89] Ohtake, F. and M. Saito (1998), "Population Ageing and Consumption Inequality in Japan", Review of Income and Wealth, 44(3), 361-378.
- [90] Piketty, T. and E. Saez (2003), 'Income Inequality in the Unisted Sates: 1913-1998', Quarterly Journal of Economics, February.
- [91] Primiceri, Giorgio E. and Thijs van Rens (2004). Inequality over the Business Cycle: Estimating Income Risk Using Micro-Data on Consumption. CREI WorkingPaper.
- [92] Primiceri, Giorgio E. and Thijs van Rens (2006), "Predictable Life-Cycle Shocks, Income Risk and Consumption Inequality", mimeo, CREI UPF, February.

- [93] Skinner, J. (1987), "A superior measure of consumption from the Panel Study of Income Dynamics", *Economic Letters*, **23**, 213-16.
- [94] Storesletten, K., C. I. Telmer, and A. Yaron, (2004a), Cyclical dynamics in idiosyncratic labor-market risk, Journal of Political Economy Forthcoming.
- [95] West, K. D. (1988), "The Insensitivity of Consumption to News about Income," Journal of Monetary Economics, 21: 17-34.
- [96] Wu, X. and J. M. Perloff (2004), "China's Income Distribution and Inequality," Econometric Society 2004 North American Summer Meetings, Econometric Society.